

Module 1: Basics of DNA and DNA self-assembly

CSE590: Molecular programming and neural computation

Double-stranded DNA

Biological DNA stores hereditary information

Width of the double helix: 2nm Distance between base pairs: 0.34 nm

Carsonella rudii (smallest non-viral genome): 160,000 bp Human genome: 3.2 Billion bp Lungfish (largest vertebrate genome): 130 Billion bp

DNA nucleotides

DNA directionality

Watson Crick base paring

Double-stranded DNA representations

The double helix consists of **two DNA strands with complementary** sequences (base pairs: A:T, C:G) and with opposite orientation

DNA can be commercially synthesized

Single-stranded DNA with any sequence can be commercially synthesized length up to ~200 bases, cost: ~50 cents/base, 1 nMole (10¹⁵) per order, same-day synthesis

Reverse complementarity

Find the reverse complement of the following sequences:

5'-AAAA-3'

5'-AACCC-3'

5'-CTGGACTAGAATT-3'

What happens when these strands are mixed in a test tube?

- 1: 5'-CACACACA-3'
- 2: 5'-TTTTTTGTGTGTG-3'
- 3: 5'-GTGTGTGT-3'

What happens when these strands are mixed in a test tube?

- 1: 5'-TTTTTT-3'
- 2: 5'-CACACACANNNNAGAGAGAG-3'

What happens when these strands are mixed in a test tube?

- 1: 5'-ATTCAGATCCACCCAAAGAG-3'
- 2: 5'-CTCTTTGGGTTCCCAAATGT-3'
- 3: 5'-ACATTTGGGAGGATCTGAAT-3'

Single-stranded DNA is flexible

Complementary single-stranded domains bind (hybridize) to each other. Formation of base pairs is energetically favorable and drives the reaction forwards

DNA is a programmable material

DNA is programmable: sequence determines interactions

Are we really doing this by hand?

Analysis	Design	Utilities	Downloads
	NUPACK is a nucleic acid sy	a growing software suite for the analysis and design of ystems.	
	The NUPACK w	web application currently enables:	
		5: thermodynamic analysis of dilute solutions cting nucleic acid strands (demos).	
		single-state and multi-state sequence or interacting nucleic acid strands (demos).	
		: evaluation, display, and annotation of um properties of a complex of nucleic acid (demos).	
		rithms are formulated in terms of nucleic acid ucture. In most cases, pseudoknots are excluded from ensemble.	
~		me to use NUPACK for your research. Please cite rithms and the NUPACK web application appropriately.	

Copyright © 2007 - 2013 Caltech. All rights reserved. | Contact | Model | Citation | Funding | Terms of use

www.nupack.org

NUPACK nucleic acid package

Analysis	Design	Utilities		Dowr	loads
Input				Demos	Help
Number		: • RNA O DNA : 37.0 °C 0 : 1 ÷ 0	Compute melt: Maximum complex size:		
Advanced option Email addr	ress:				Analyze

Copyright © 2007 - 2014 Caltech. All rights reserved. Contact Model Citation Funding Terms of use

NUPACK nucleic acid package

	Analysis	Design	Utilities		Dowr	nloads
	Input				Demos	Help
		Nucleic acid type:	🔾 RNA 💿 DNA	0		
		Temperature:	25 °C 📀	Compute melt: 🛛 😑		
	Numb	er of strand species:	3 🗘 😢	Maximum complex size: 3 🗧	strands 🥝	
Г	Strand species]
	strand1 :	ATTCAGATCCACCCAAA	GAG		7	
					/ 0	
	Concentration:	1 µM \$			- •	
	strand2	CTCTTTGGGTTCCCAAA	TGT		7	
				,	4	
	Concentration:	1 µM \$			_	
	strand3	ACATTTGGGAGGATCTG	AAT]	
				,	4	
	Concentration:	1 µM \$				
	Advanced optior	15				
	Email add	ress:		Ø	_	

Input Results Ensemble pair fractio	ns 🥹		Demos	Help
Ensemble pair fractio	ns 🥹			
Download SVG @ Download data@				
Equilibrium conce	ntrations			
strand1-strand2-	strand3	0.88 µM		
strand1-strand3	I			
strand2 0.12 µM				
strand2-strand2 0.0011 µM				
Download histogra	m data 😢			
Histogram filters Change strand con				

Amounts and concentrations

07-Feb-2011			
Sequence - aGFP-S-122c			
Properties	Amount Of Oligo		Shipped To
Tm (50mM NaCl): 60.1 °C GC Content: 50. % Molecular Weight: 8,129.1 nmoles/OD260: 4.0 ug/OD260: 32.6 Ext. Coefficient: 249,100 L/(molecm)	21 = 11.6 OD 26 nMoles	= 0.09 mg	GEORG SEELIG UNIVERSITY OF WASHINGTON-BIOCHEA 1959 NE PACIFIC ST SEATTLE, WA 98195 USA NMOLES 20 POING Credit Cord
			Cashing No. C. 240 FO Ho. Chedin Card
Secondary Structure Calculations			
Lowest folding free energy (kcal/mole):	-0.05 at 25 °C		
Lowest folding free energy (kcal/mole): Strongest Folding Tm: 25.9 °C Secondary structure should not affect yie			
Secondary Structure Calculations Lowest folding free energy (kcal/mole): Strongest Folding Tm: 25.9 °C Secondary structure should not affect yie this oligo. Oligo Base Types			
Lowest folding free energy (kcal/mole): Strongest Folding Tm: 25.9 °C Secondary structure should not affect yie this oligo.	eld or purity for		
Lowest folding free energy (kcal/mole): Strongest Folding Tm: 25.9 °C Secondary structure should not affect yie this oligo. Oligo Base Types RNA bases	old or purity for Quantity 19		

Amounts and concentrations

What's a Mole (unit)? 6.02x10²³ molecules

11.6 nMoles = $11.6 \times 10^{-9} \times 6.02 \times 10^{23}$ molecules

DNA reactions occur in an aqueous solution and it is convenient to think about concentrations rather than amounts.

Concentration=Number/Volume (Unit: M, Molar=Mole/liter)

How much water do you need to add to 11.6 nMoles of DNA to get a 100 uM (micro Molar) concentration?

Outlook: Designing DNA structures

So far, we analyzed sequence that were already given to us. But how can we design the sequences that correspond to a target structure?